Abstract
There is an urgent need for novel therapeutic agents for hepatitis B virus (HBV) infection. Although currently available nucleos(t)ide analogs potently inhibit viral replication, they have no direct effect on the expression of viral proteins transcribed from a viral covalently closed circular DNA (cccDNA). As high viral antigen load may play a role in this chronic and HBV-related carcinogenesis, the goal of HBV treatment is to eradicate viral proteins. HBV regulatory protein X (HBx) binds to the host DNA damage-binding protein 1 (DDB1) protein to degrade structural maintenance of chromosomes 5/6 (Smc5/6), resulting in activation of viral transcription from cccDNA. Here, using a split luciferase complementation assay system, we present a comprehensive compound screening system to identify inhibitors of the HBx-DDB1 interaction. Our protocol enables easy detection of interaction dynamics in real time within living cells. This technique may become a key assay to discover novel therapeutic agents for treatment of HBV infection.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have