Abstract

Identifying the underlying factors derived from geospatial and remote sensing data that contribute to forest fires is of paramount importance. It aids experts in pinpointing areas and periods most susceptible to these incidents. In this study, we employ the geographically and temporally weighted regression (GTWR) method in conjunction with a refined continuous invasive weed optimization (CIWO) algorithm to assess certain spatially relevant drivers of forest fires, encompassing both biophysical and anthropogenic influences. Our proposed approach demonstrates theoretical utility in addressing the spatial regression problem by meticulously accounting for the autocorrelation and non-stationarity inherent in spatial data. We leverage tricube and Gaussian kernels to weight the GTWR for two distinct temporal datasets, yielding coefficients of determination (R2) amounting to 0.99 and 0.97, respectively. In contrast, traditional geographically weighted regression (GWR) using the tricube kernel achieved R2 values of 0.87 and 0.88, while the Gaussian kernel yielded R2 values of 0.8138 and 0.82 for the same datasets. This investigation underscores the substantial impact of both biophysical and anthropogenic factors on forest fires within the study areas.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.