Abstract

Sensitivity analysis methods are used to identify measurements most likely to provide important information for model development and predictions. Methods range from computationally demanding Monte Carlo and cross-validation methods that require thousands to millions of model runs, to very computationally efficient linear methods able to account for interrelations between parameters that involve tens to hundreds of runs. Some argue that because linear methods neglect the effects of model nonlinearity, they are not worth considering. However, when faced with computationally demanding models needed to simulate, for example, climate change, the chance of obtaining insights with so few model runs is tempting. This work compares results for a nonlinear groundwater model using computationally demanding cross-validation and computationally efficient local sensitivity analysis methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.