Abstract

In the article, we solve the inverse problems to recover unknown space-time dependent functions of heat conductivity and heat source for a nonlinear convective-diffusive equation, without needing of initial temperature, final time temperature, and internal temperature data. After adopting a homogenization technique, a set of spatial boundary functions are derived, which satisfy the homogeneous boundary conditions. The homogeneous boundary functions and zero element constitute a linear space, and then a new energetic functional is derived in the linear space, which preserves the time-dependent energy. The linear systems and iterative algorithms to recover the unknown parameters with energetic boundary functions as the bases are developed, which are convergent fast at each time marching step. The data required for the recovery of unknown functions are parsimonious, including the boundary data of temperatures and heat fluxes and the boundary data of unknown functions to be recovered. The accuracy and robustness of present methods are confirmed by comparing the exact solutions with the identified results, which are obtained under large noisy disturbance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.