Abstract

Identifying genes significantly related to diseases is a focus in the study of disease mechanisms. In this paper, from the perspective of integrated analysis and dynamic control, a method for identifying genes significantly related to diseases based on logic networks constructed by the LAPP method, referred to as NCCM, is proposed and applied to the study of the mechanism of acute myocardial infarction (AMI). It is found that 82.35% of 17 differential control capability genes (DCCGs) identified by NCCM are significantly correlated with AMI/MI in the literature and DISEASES database. The enrichment analysis of DCCGs shows that AMI is closely related to the positive regulation of vascular-associated smooth muscle cell proliferation and regulation of cytokine production involved in the immune response, in which HBEGF, THBS1, NR4A3, NLRP3, EDN1, and MMP9 play a crucial role. In addition, although the expression levels of CNOT6L and ACYP1 are not significantly different between the control group and the AMI group, NCCM shows that they are significantly associated with AMI. Although this result still needs further verification, it shows that the method can not only identify genes with large differences in expression but also identify genes that are associated with diseases but with small changes in expression.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call