Abstract

We study the entanglement spectrum (ES) of two-dimensional $C_{n}$-symmetric second-order topological insulators (TIs). We show that some characteristic higher order topological observables, e.g., the filling anomaly and its associated fractional corner charge, can be determined from the ES of atomic and fragile TIs. By constructing the relationship between the configuration of Wannier orbitals and the number of protected in-gap states in the ES for different symmetric cuts in real space, we express the fractional corner charge in terms of the number of protected in-gap states of the ES. We show that our formula is robust in the presence of electron-electron interactions as long as the interactions preserve $C_{n}$ rotation symmetry and charge-conservation symmetry. Moreover, we discuss the possible signatures higher order topology in the many-body ES. Our methods allow the identification of some classes of higher order topology without requiring the usage of nested Wilson loops or nested entanglement spectra.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.