Abstract

Identification of prognostic variables for poor outcomes following open reduction internal fixation (ORIF) of displaced proximal humerus fractures have been limited to singular, linear factors and subjective clinical intuition. Machine learning (ML) has the capability to objectively segregate patients based on various outcome metrics and reports the connectivity of variables resulting in the optimal outcome. Therefore, the purpose of this study was to (1) use unsupervised ML to stratify patients to high-risk and low-risk clusters based on postoperative events, (2) compare the ML clusters to the American Society of Anesthesiologists (ASA) classification for assessment of risk, and (3) determine the variables that were associated with high-risk patients after proximal humerus ORIF. The American College of Surgeons-National Surgical Quality Improvement Program database was retrospectively queried for patients undergoing ORIF for proximal humerus fractures between 2005 and 2018. Four unsupervised ML clustering algorithms were evaluated to partition subjects into "high-risk" and "low-risk" subgroups based on combinations of observed outcomes. Demographic, clinical, and treatment variables were compared between these groups using descriptive statistics. A supervised ML algorithm was generated to identify patients who were likely to be "high risk" and were compared to ASA classification. A game-theory-based explanation algorithm was used to illustrate predictors of "high-risk" status. Overall, 4670 patients were included, of which 202 were partitioned into the "high-risk" cluster, while the remaining (4468 patients) were partitioned into the "low-risk" cluster. Patients in the "high-risk" cluster demonstrated significantly increased rates of the following complications: 30-day mortality, 30-day readmission rates, 30-day reoperation rates, nonroutine discharge rates, length of stay, and rates of all surgical and medical complications assessed with the exception of urinary tract infection (P<.001). The best performing supervised machine learning algorithm for preoperatively identifying "high-risk" patients was the extreme-gradient boost (XGBoost), which achieved an area under the receiver operating characteristics curve of 76.8%, while ASA classification had an area under the receiver operating characteristics curve of 61.7%. Shapley values identified the following predictors of "high-risk" status: greater body mass index, increasing age, ASA class 3, increased operative time, male gender, diabetes, and smoking history. Unsupervised ML identified that "high-risk" patients have a higher risk of complications (8.9%) than "low-risk" groups (0.4%) with respect to 30-day complication rate. A supervised ML model selected greater body mass index, increasing age, ASA class 3, increased operative time, male gender, diabetes, and smoking history to effectively predict "high-risk" patients.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.