Abstract
We generalize chaos game representation (CGR) to higher dimensional spaces while maintaining its bijection, keeping such method sufficiently representative and mathematically rigorous compare to previous attempts. We first state and prove the asymptotic property of CGR and our generalized chaos game representation (GCGR) method. The prediction follows that the dissimilarity of sequences which possess identical subsequences but distinct positions would be lowered exponentially by the length of the identical subsequence; this effect was taking place unbeknownst to researchers. By shining a spotlight on it now, we show the effect fundamentally supports (G)CGR as a similarity measure or feature extraction technique. We develop two feature extraction techniques: GCGR-Centroid and GCGR-Variance. We use the GCGR-Centroid to analyze the similarity between protein sequences by using the datasets 9 ND5, 24 TF and 50 beta-globin proteins. We obtain consistent results compared with previous studies which proves the significance thereof. Finally, by utilizing support vector machines, we train the anticancer peptide prediction model by using both GCGR-Centroid and GCGR-Variance, and achieve a significantly higher prediction performance by employing the 3 well-studied anticancer peptide datasets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.