Abstract

Membrane-type 2 matrix metalloproteinase (MT2-MMP) is critical for the aggressive lung tumor growth, progression, and metastasis. Here, to obtain the peptides in binding specifically to MT2-MMP, a phage-displayed 12 peptide library was used and the affinity of peptides toward MT2-MMP was identified by multitest methods. The results showed that a specific MT2-MMP-targeting peptide with the sequence of HHRLHSAPPPQA (MT2-AF5p) exhibited a high specificity and strong affinity against lung tumors. To further achieve specific targeting and precise therapeutic effects, MT2-AF5p was conjugated onto fluorescent mesoporous silica nanoparticles (FMSN-NH2) and loaded with doxorubicin (DOX) to construct a chemotherapeutic drug-targeting delivery system (DOX-loaded FMSN@MT2-AF5p). The DOX-loaded FMSN@MT2-AF5p achieved a boost in DOX release in an acidic environment. Most importantly, FMSN@MT2-AF5p efficiently targeted the tumor area, as seen in the fluorescent imaging ex vivo. The novel peptide-functionalized nanoparticles with a good biocompatibility are promising for clinical use as a precise targeting nanodrug for lung cancer diagnosis and therapy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call