Abstract
The transcription factor etsrp/Er71/Etv2 is a master control gene for vasculogenesis in all species studied to date. It is also required for hematopoiesis in zebrafish and mice. Several novel genes expressed in vasculature have been identified through transcriptional profiling of zebrafish embryos overexpressing etsrp by microarrays. Here we re-examined this transcriptional profile by Illumina RNA-sequencing technology, revealing a substantially increased number of candidate genes regulated by etsrp. Expression studies of 50 selected candidate genes from this dataset resulted in the identification of 39 new genes that are expressed in vascular cells. Regulation of these genes by etsrp was confirmed by their ectopic induction in etsrp overexpressing and decreased expression in etsrp deficient embryos. Our studies demonstrate the effectiveness of the RNA-sequencing technology to identify biologically relevant genes in zebrfish and produced a comprehensive profile of genes previously unexplored in vascular endothelial cell biology.
Highlights
The cardiovasacular system, which includes the heart, vessels and blood, function together to deliver oxygen and nutrients to cells throughout the body and remove metabolic waste
A total of 123 million single-end or paired-end reads were obtained and 35% of the reads were mapped onto the unigene transcript sequence database (Build #117) [26] using the Burrows Wheeler Aligner (BWA) alignment program [27]
The high correlation between genes induced by etsrp as predicted by RNA-seq and their confirmation by whole mount in situ hybridization (WISH) reinforces the effectiveness of the methods used to interrogate transcriptional profiles in zebrafish
Summary
The cardiovasacular system, which includes the heart, vessels and blood, function together to deliver oxygen and nutrients to cells throughout the body and remove metabolic waste. Understanding the development of this system is instrumental to the advancement of both basic and clinical sciences. The zebrafish, Danio rerio, is an excellent model organism for such studies due to embryo transparency, high fecundity, and fast development of organogenesis. The cardiovascular system is formed within one day of birth [1,2]. Cellular and molecular studies in zebrafish, a great deal of knowledge regarding the molecular components and cellular events that establish this system has been obtained. It is notable that many of the key molecular players and events that drive organogenesis in zebrafish are evolutionarily and functionally conserved with other organisms, including mammals
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.