Abstract

The identification of various substances by multivariate data analysis of terahertz transmittance spectra is demonstrated. Transmittance spectra were obtained by the use of a Fourier transform infrared spectrometer. By means of principal component analysis and partial least squares regression, the spectral data were analyzed in order to identify substances and mixtures of several substances. With only three principal components, detection and identification of substances are possible with high accuracy. Using these methods, concentration ratios of substances in mixtures of two substances can be determined with an accuracy of 10 %. It is shown that the method is robust against disturbances in the spectra such as standing waves. This is particularly important for practical applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.