Abstract
Fourier transform infrared (FTIR) spectrometry is commonly used for the identification of reference substances (RSs) in solid, liquid, or gaseous mixtures. An expert is generally required to perform the analysis, which is a bottleneck in emergency situations. This study proposes a support vector machine (SVM)-based algorithm, the peak correlation classifier (PCC), designed to rapidly detect the presence of a specific threat or reference substance in a sample. While SVM has been used in various spectrographic contexts, it has rarely been used on FTIR spectra. The proposed algorithm discovers correlation similarities between the FTIR spectrum of the RS and the test sample and then uses SVM to determine whether or not the RS is present in the sample. The study also shows how the additive nature of FTIR spectra can be used to create ‘synthetic’ substances that significantly improve the detection capability and decision confidence of the SVM classifier.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.