Abstract

Quantitative identification of tunneling ionization (TI) and multiphoton ionization (MPI) with Keldysh parameter γ in intermediate regime is of great importance to better understand various ionization-triggered strong-field phenomena. We theoretically demonstrate that the numerical observable ionization delay time is a more reliable indicator for characterizing the transition from TI to MPI under different laser parameters. Using non-linear iterative curve fitting algorithm (NICFA), the detected time-dependent probability current of ionized electrons can be decoupled into weighted TI and MPI portions. This enables us to confirm that the observed plateau-like structure in ionization delay time picture at the intermediate γ originates from the competition between TI and MPI processes. A hybrid quantum and classical approach (HQCA) is developed to evaluate the weights of TI and MPI electrons in good agreement with NICFA result. Moreover, the well separated TI and MPI electrons using HQCA are further propagated classically for mapping their final momentum, which well reproduces the experimental or ab-initio numerical calculated signatures of ionized electron momentum distribution in a rather broad γ regime.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call