Abstract
BackgroundLong non-coding RNAs (lncRNAs) play important roles in the regulation of plant responses to environmental stress by acting as essential regulators of gene expression. However, whether and how lncRNAs are involved in cold acclimation-dependent freezing tolerance in plants remains largely unknown. Medicago truncatula is a prominent model for studies of legume genomics, and distinguished by its cold-acclimation characteristics. To determine the roles of lncRNAs in plant cold stress response, we conducted genome-wide high-throughput sequencing in the legume model plant M. truncatula.ResultsRNA-seq data were generated from twelve samples for the four treatments, i.e., non-cold treated leaves and roots, cold-treated leaves and roots of M. truncatula Jemalong A17 seedlings. A total of 1204 million raw reads were generated. Of them, 1150 million filtered reads after quality control (QC) were subjected to downstream analysis. A large number of 24,368 unique lncRNAs were identified from the twelve samples. Among these lncRNAs, 983 and 1288 were responsive to cold treatment in the leaves and roots, respectively. We further found that the intronic-lncRNAs were most sensitive to the cold treatment. The cold-responsive lncRNAs were unevenly distributed across the eight chromosomes in M. truncatula seedlings with obvious preferences for locations. Further analyses revealed that the cold-responsive lncRNAs differed between leaves and roots. The putative target genes of the lncRNAs were predicted to mainly involve the processes of protein translation, transport, metabolism and nucleic acid transcription. Furthermore, the networks of a tandem array of CBF/DREB1 genes that were reported to be located in a major freezing tolerance QTL region on chromosome 6 and their related lncRNAs were dissected based on their gene expression and chromosome location.ConclusionsWe identified a comprehensive set of lncRNAs that were responsive to cold treatment in M. truncatula seedlings, and discovered tissue-specific cold-responsive lncRNAs in leaves and roots. We further dissected potential regulatory networks of CBF Intergenic RNA (MtCIR1) and MtCBFs that play critical roles in response and adaptation of M. truncatula to cold stress.
Highlights
Long non-coding RNAs play important roles in the regulation of plant responses to environmental stress by acting as essential regulators of gene expression
We identified a comprehensive set of Long non-coding RNAs (lncRNAs) that were responsive to cold treatment in M. truncatula seedlings
In the present study, we identified a large number of cold-responsive lncRNAs in both leaves and roots of legume model plant M. truncatula seedlings
Summary
Long non-coding RNAs (lncRNAs) play important roles in the regulation of plant responses to environmental stress by acting as essential regulators of gene expression. Medicago truncatula is a prominent model for studies of legume genomics, and distinguished by its cold-acclimation characteristics. To determine the roles of lncRNAs in plant cold stress response, we conducted genome-wide high-throughput sequencing in the legume model plant M. truncatula. Long non-coding RNAs (lncRNAs), which are distinguished by the lack of any obvious open reading frames (ORFs), are mainly transcribed by RNA Pol II, spliced, 5′-capped and even polyadenylated at 3′ end [2, 3]. Studies on lncRNAs in plants have shown that they play important roles in a wide range of biological processes, especially in reproductive development and responses to environmental stresses [3, 8]
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have