Abstract

The BRAFV600E mutation is the most frequent genetic abnormality in adult papillary thyroid carcinomas (PTCs). On the other hand, various chromosomal rearrangements are more prevalent in childhood and adolescent PTCs. The aim of the present study was to identify novel rearrangements in PTCs from young patients. Among 63 postoperative specimens of childhood and adolescent PTCs, which had been discovered by the thyroid ultrasound screening program in Fukushima, nine samples without prevalent known oncogenes, BRAFV600E, RAS, RET/PTC1, RET/PTC3, and ETV6/NTRK3, were analyzed in the current study by quantitative real-time reverse transcription polymerase chain reaction to screen for novel fusion genes by comparing transcript expression between extracellular and kinase domains of ALK, NTRK1, NTRK3, and RET. Of the above nine samples, five samples were suspected to harbor a fusion, and using subsequent 5' rapid amplification of cDNA end (RACE), two already reported fusion oncogenes, STRN/ALK and TPR/NTRK1, and three novel fusions, SQSTM1/NTRK3, AFAP1L2/RET, and PPFIBP2/RET, were identified. Functional analyses of these three chimeric genes were performed, and their transforming abilities were confirmed through the activation of mitogen-activated protein kinase (MAPK). Three novel fusion oncogenes have been identified in young PTC patients in Fukushima, suggesting that rare fusions may be present among the cases negative for known oncogenes in this age group and that such rearrangements can play a significant role in thyroid carcinogenesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.