Abstract

Bayesian analyses frequently employ two-stage hierarchical models involving two-variance parameters: one controlling measurement error and the other controlling the degree of smoothing implied by the model's higher level. These analyses can be hampered by poorly identified variances which may lead to difficulty in computing and in choosing reference priors for these parameters. In this paper, we introduce the class of two-variance hierarchical linear models and characterize the aspects of these models that lead to well-identified or poorly identified variances. These ideas are illustrated with a spatial analysis of a periodontal data set and examined in some generality for specific two-variance models including the conditionally autoregressive (CAR) and one-way random effect models. We also connect this theory with other constrained regression methods and suggest a diagnostic that can be used to search for missing spatially varying fixed effects in the CAR model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.