Abstract

Instrumental algorithmic and software tools for constructing a nonparametric dynamic model of the human oculo-motor system (OMS) based on its inertial and nonlinear properties are developed in the paper on the basis of the experimental studies data of «input-output» in the form of the Volterra model. Taking into account the specificity of the object investigated, test multistage signals (visual stimulus) were used for identification. Based on the experimental data obtained using the developed computational algorithms and data processing software, a nonparametric dynamic model of OMS in the form of a transition function and transition functions of the 2nd and 3rd orders is constructed. Verification of the constructed model showed its adequacy to the object investigated – a practical coincidence (within the acceptable error) of the object and model feedback for the same test effect.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.