Abstract

We detected and compared the mRNA and protein expression levels of immunity-associated and symbiosis-associated genes in peanut (Arachis hypogaea) roots inoculated with entomopathogenic fungus M. anisopliae or the phytopathogenic fungus Fusarium oxysporum, by RT-qPCR and parallel reaction monitoring (PRM). The selected genes were mainly associated with plant-fungus interactions, signal transduction, regulation of cell death, nitrogen or iron metabolism, nutrient acquisition or transport, and compound synthesis based on previous transcriptome analysis. The results showed that the host basal defense responses were significantly inhibited by both M. anisopliae and F. oxysporum, which suggests that both fungi actively suppress the host immunity for successful colonization and infection. However, only F. oxysporum induced a strong host hypersensitivity, which indicates that the host is strongly resisting F. oxysporum but potentially allowing M. anisopliae. Additionally, the genes (SYMRK, CaM, CCaMK, FRI2, ABCC2, F6H1, SCT, NRT24 and LTP1) related to symbiosis and growth were distinctively observed with an up-regulated expression following M. anisopliae treatment, which implies that the host was actively initiating the establishment of symbiosis with the fungus. This study revealed a synergistic relationship between host immunosuppression and the promotion of symbiosis during interactions with M. anisopliae. It suggested that M. anisopliae benefited plant for symbiotic relationship, in addition to controlling herbivorous insects as an entomopathogen.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.