Abstract

The method of identification of the intensity of the sources of chemically interacting pollutants is presented. The implemented model includes the phenomenon of self-purification in reaching the limit concentration. For computational implementation the possibility is shown of using parallel methods based on Nvidia CUDA graphic processing units. The method of source identification combined with the parallel computing implementation using the modified red-black ordering (D4) method reduces simulation time by 12 times and the RAM usage by 30% when using the Nvidia c2050 graphics accelerator in comparison with the node of the NTUU "KPI" cluster.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.