Abstract

BackgroundCritical limb ischemia (CLI) constitutes the most aggressive form of peripheral arterial occlusive disease, characterized by the blockade of arteries supplying blood to the lower extremities, significantly diminishing oxygen and nutrient supply. CLI patients usually undergo amputation of fingers, feet, or extremities, with a high risk of mortality due to associated comorbidities.Circulating angiogenic cells (CACs), also known as early endothelial progenitor cells, constitute promising candidates for cell therapy in CLI due to their assigned vascular regenerative properties. Preclinical and clinical assays with CACs have shown promising results. A better understanding of how these cells participate in vascular regeneration would significantly help to potentiate their role in revascularization.Herein, we analyzed the initial molecular mechanisms triggered by human CACs after being administered to a murine model of CLI, in order to understand how these cells promote angiogenesis within the ischemic tissues.MethodsBalb-c nude mice (n:24) were distributed in four different groups: healthy controls (C, n:4), shams (SH, n:4), and ischemic mice (after femoral ligation) that received either 50 μl physiological serum (SC, n:8) or 5 × 105 human CACs (SE, n:8). Ischemic mice were sacrificed on days 2 and 4 (n:4/group/day), and immunohistochemistry assays and qPCR amplification of Alu-human-specific sequences were carried out for cell detection and vascular density measurements. Additionally, a label-free MS-based quantitative approach was performed to identify protein changes related.ResultsAdministration of CACs induced in the ischemic tissues an increase in the number of blood vessels as well as the diameter size compared to ischemic, non-treated mice, although the number of CACs decreased within time. The initial protein changes taking place in response to ischemia and more importantly, right after administration of CACs to CLI mice, are shown.ConclusionsOur results indicate that CACs migrate to the injured area; moreover, they trigger protein changes correlated with cell migration, cell death, angiogenesis, and arteriogenesis in the host. These changes indicate that CACs promote from the beginning an increase in the number of vessels as well as the development of an appropriate vascular network.Graphical abstract

Highlights

  • Critical limb ischemia (CLI) constitutes the most aggressive form of peripheral arterial obstructive disease (PAOD), a cardiovascular disease (CVD) mainly caused by atherosclerosis, resulting in blockade of arteries supplying blood to the lower extremities [1]

  • Our results indicate that Circulating angiogenic cells (CACs) migrate to the injured area; they trigger protein changes correlated with cell migration, cell death, angiogenesis, and arteriogenesis in the host

  • No significant differences were seen between seen in CAC-treated mice (SE) and SC untreated mice, indicating that the expected effect of CACs was not detected in these initial phase, at least externally

Read more

Summary

Introduction

Critical limb ischemia (CLI) constitutes the most aggressive form of peripheral arterial obstructive disease (PAOD), a cardiovascular disease (CVD) mainly caused by atherosclerosis, resulting in blockade of arteries supplying blood to the lower extremities [1]. Patients with CLI have a high risk of limb loss and fatal or non-fatal vascular events, such as myocardial infarction (MI) and stroke [1]. This disease affects more than 202 million people around the world and up to 10–15% of the aged adult population [2]. Critical limb ischemia (CLI) constitutes the most aggressive form of peripheral arterial occlusive disease, characterized by the blockade of arteries supplying blood to the lower extremities, significantly diminishing oxygen and nutrient supply. We analyzed the initial molecular mechanisms triggered by human CACs after being administered to a murine model of CLI, in order to understand how these cells promote angiogenesis within the ischemic tissues

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.