Abstract

Nitrobenzylthioinosine (NBMPR) was employed as a covalent probe of the erythrocyte nucleoside transporter. This nucleoside analogue, a potent inhibitor of nucleoside transport, binds tightly (KD = 10(-10) - 10(-9) M) but reversibly to specific sites on the carrier mechanism. High intensity UV irradiation of intact human erythrocytes, isolated "ghosts," and "protein-depleted" membranes in the presence of [3H]NBMPR and dithiothreitol (as a free radical scavenger) under nonequilibrium and equilibrium binding conditions resulted in selective covalent incorporation of 3H into the band 4.5 region of sodium dodecyl sulfate-polyacrylamide gels (Mr = 45,000-65,000). Covalent labeling of band 4.5 protein(s) under equilibrium binding conditions was inhibited by nitrobenzylthioguanosine, dipyridamole, uridine, and adenosine. A similar photolabeling pattern was observed using membranes from pig erythrocytes. In contrast, no incorporation of radioactivity into band 4.5 was observed under equilibrium binding conditions with membranes from nucleoside-impermeable sheep erythrocytes. These experiments suggest that the human and pig erythrocyte nucleoside transporters are band 4.5 polypeptides, a conclusion supported by previous isolation studies based on the assay of reversible [3H]NBMPR binding activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.