Abstract

The use of microbial inoculants in agriculture as biofertilisers and/or biopesticides is an appealing alternative to replace or reduce the practice of agrochemicals. Plant microbiota studies are revealing the different bacterial groups which are populating plant microbiomes re-energising the plant probiotic bacteria (PPB) translational research sector. Some single-microbial strain bioinoculants have proven valid in agriculture (e.g., based on Trichoderma, mycorrhiza or rhizobia); however, it is now recommended to consider multistrain consortia since plant-beneficial effects are often a result of community-level interactions in plant microbiomes. A limiting step is the selection of a fitting combination of microbial strains in order to accomplish the best beneficial effect upon plant inoculation. In this study, we have used a subset of 23 previously identified and characterised rice-beneficial bacterial colonisers to design and test a series of associated experiments aimed to identify potential PPB consortia which are able to co-colonise and induce plant growth promotion. Bacterial strains were co-inoculated in vitro and in planta using several different methods and their co-colonisation and co-persistence monitored. Results include the identification of two 5-strain and one 2-strain consortia which displayed plant growth-promoting features. Future practical applications of microbiome research must include experiments aimed at identifying consortia of bacteria which can be most effective as crop amendments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call