Abstract

The extensive use of chemical fertilizers has served as a response to the increasing need for crop production in recent decades. While it addresses the demand for food, it has resulted in a decline in crop productivity and a heightened negative environmental impact. In contrast, plant probiotic bacteria (PPB) offer a promising alternative to mitigate the negative consequences of chemical fertilizers. PPB can enhance nutrient availability, promote plant growth, and improve nutrient uptake efficiency, thereby reducing the reliance on chemical fertilizers. This study aimed to evaluate the impact of native Rhizobium strains, specifically Rhizobium calliandrae LBP2-1, Rhizobium mayense NSJP1-1, and Rhizobium jaguaris SJP1- 2, on the growth, quality, and rhizobacterial community of tomato crops. Various mechanisms promoting plant growth were investigated, including phosphate solubilization, siderophore production, indole acetic acid synthesis, and cellulose and cellulase production. Additionally, the study involved the assessment of biofilm formation and root colonization by GFP-tagged strains, conducted a microcosm experiment, and analyzed the microbial community using metagenomics of rhizospheric soil. The results showed that the rhizobial strains LBP2-1, NSJP1-1 and SJP1-2 had the ability to solubilize dicalcium phosphate, produce siderophores, synthesize indole acetic acid, cellulose production, biofilm production, and root colonization. Inoculation of tomato plants with native Rhizobium strains influenced growth, fruit quality, and plant microbiome composition. Metagenomic analysis showed increased Proteobacteria abundance and altered alpha diversity indices, indicating changes in rhizospheric bacterial community. Our findings demonstrate the potential that native Rhizobium strains have to be used as a plant probiotic in agricultural crops for the generation of safe food and high nutritional value.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.