Abstract
Specialized pro-resolving mediator(s) (SPMs) are produced from the endogenous ω-3 polyunsaturated fatty acids (PUFA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), and accelerate resolution of acute inflammation. We identified specific clusters of SPM in human plasma and serum using LC-MS/MS based lipid mediator (LM) metabololipidomics in two separate laboratories for inter-laboratory validation. The human plasma cluster consisted of resolvin (Rv)E1, RvD1, lipoxin (LX)B4, 18-HEPE, and 17-HDHA, and the human serum cluster consisted of RvE1, RvD1, AT-LXA4, 18-HEPE, and 17-HDHA. Human plasma and serum SPM clusters were increased after ω-3 supplementation (triglyceride dietary supplements or prescription ethyl esters) and low dose intravenous lipopolysaccharide (LPS) challenge. These results were corroborated by parallel determinations with the same coded samples in a second, separate laboratory using essentially identical metabololipidomic operational parameters. In these healthy subjects, two ω-3 supplementation protocols (Study A and Study B) temporally increased the SPM cluster throughout the endotoxin-challenge time course. Study A and Study B were randomized and Study B also had a crossover design with placebo and endotoxin challenge. Endotoxin challenge temporally regulated lipid mediator production in human serum, where pro-inflammatory eicosanoid (prostaglandins and thromboxane) concentrations peaked by 8 hours post-endotoxin and SPMs such as resolvins and lipoxins initially decreased by 2 h and were then elevated at 24 hours. In healthy adults given ω-3 supplementation, the plasma concentration of the SPM cluster (RvE1, RvD1, LXB4, 18-HEPE, and 17-HDHA) peaked at two hours post endotoxin challenge. These results from two separate laboratories with the same samples provide evidence for temporal production of specific pro-resolving mediators with ω-3 supplementation that together support the role of SPM in vivo in inflammation-resolution in humans.
Highlights
Specialized pro-resolving mediator(s) (SPMs) are produced from the endogenous ω-3 polyunsaturated fatty acids (PUFA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), and accelerate resolution of acute inflammation
Using the above-specified metabololipidomic profiling approach with serum and plasma, we identified a cluster of potent bioactive[3,4,5] pro-resolving mediators consisting of resolvin E1 (5S, 12R, 18R-trihydroxy-eicosa-6Z, 8E, 10E, 14Z, 16E-pentaenoic acid; RvE1), resolvin D1 (7S, 8R, 17S-trihydroxy-docosa-4Z, 9E, 11E, 13Z, 15E, 19Z-hexaenoic acid; RvD1), aspirin-triggered [R-epimer] (AT)-lipoxin A4 (5S, 6R, 15S-trihydroxy-eicosa-7E, 9E, 11Z, 13E-tetraenoic acid; LXA4), 18-hydroxy-eicosapentaenoic acid (HEPE), and 17-hydroxy-docosahexaenoic acid (HDHA) and elucidated their temporal regulation during inflammatory challenge and ω-3 PUFA supplementation
Using metabololipidomics focusing on cyclooxygenase and lipoxygenase pathways and products, we identified lipid mediator (LM)-specialized pro-resolving mediators (SPM) from each of the bioactive mediator metabolomes derived from DHA, EPA, and arachidonic acid (AA) (Supplementary Figs 2–5)
Summary
Specialized pro-resolving mediator(s) (SPMs) are produced from the endogenous ω-3 polyunsaturated fatty acids (PUFA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), and accelerate resolution of acute inflammation. Human plasma and serum SPM clusters were increased after ω-3 supplementation (triglyceride dietary supplements or prescription ethyl esters) and low dose intravenous lipopolysaccharide (LPS) challenge These results were corroborated by parallel determinations with the same coded samples in a second, separate laboratory using essentially identical metabololipidomic operational parameters. In healthy adults given ω-3 supplementation, the plasma concentration of the SPM cluster (RvE1, RvD1, LXB4, 18-HEPE, and 17-HDHA) peaked at two hours post endotoxin challenge These results from two separate laboratories with the same samples provide evidence for temporal production of specific pro-resolving mediators with ω-3 supplementation that together support the role of SPM in vivo in inflammation-resolution in humans. Using the above-specified metabololipidomic profiling approach with serum and plasma, we identified a cluster of potent bioactive[3,4,5] pro-resolving mediators consisting of resolvin E1 (5S, 12R, 18R-trihydroxy-eicosa-6Z, 8E, 10E, 14Z, 16E-pentaenoic acid; RvE1), resolvin D1 (7S, 8R, 17S-trihydroxy-docosa-4Z, 9E, 11E, 13Z, 15E, 19Z-hexaenoic acid; RvD1), aspirin-triggered [R-epimer] (AT)-lipoxin A4 (5S, 6R, 15S-trihydroxy-eicosa-7E, 9E, 11Z, 13E-tetraenoic acid; LXA4), 18-hydroxy-eicosapentaenoic acid (HEPE), and 17-hydroxy-docosahexaenoic acid (HDHA) and elucidated their temporal regulation during inflammatory challenge and ω-3 PUFA supplementation
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have