Abstract
Development of a taste sensor with high sensitivity, stability and selectivity is highly desirable for the food and beverage industries. The main goal of a taste sensor is to reproduce five kinds of senses of humans, which is quite difficult. The importance of knowing quality of beverages and drinking water has been recognized as a result of increase in concern in environmental pollution issues. However, no accurate measuring system appropriate for quality evaluation of beverages is available. A highly sensitive microsensor using horizontally polarized Surface Acoustic Waves (SH-SAW) for the detection and identification of soft drinks is presented in this paper. Different soft drinks were tested using this sensor and the results which could distinguish between two popular soft drinks like Pepsi and Coca cola is presented in this paper. The SH-SAW microsensors are fabricated on 36°-rotated Y cut X propagating LiTaO3 (36YX.LT) substrate. This design consists of a dual delay line configuration in which one line is free and other one is metallized and shielded. Due to high electromechanical coupling of 36YX.LT, it could detect difference in electrical properties and hence to distinguish different soft drinks. Measured electrical characteristics of these soft drinks at X-band frequency using free space system show distinguishable results. It is clear from these results that the microsensor based on 36YX.LT is an effective liquid identification system for quantifying human sensory expressions.© (2005) COPYRIGHT SPIE--The International Society for Optical Engineering. Downloading of the abstract is permitted for personal use only.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have