Abstract
BackgroundHIV-1 replication is critically dependent upon controlled processing of its RNA and the activities provided by its encoded regulatory factors Tat and Rev. A screen of small molecule modulators of RNA processing identified several which inhibited virus gene expression, affecting both relative abundance of specific HIV-1 RNAs and the levels of Tat and Rev proteins.ResultsThe screen for small molecules modulators of HIV-1 gene expression at the post-transcriptional level identified three (a pyrimidin-7-amine, biphenylcarboxamide, and benzohydrazide, designated 791, 833, and 892, respectively) that not only reduce expression of HIV-1 Gag and Env and alter the accumulation of viral RNAs, but also dramatically decrease Tat and Rev levels. Analyses of viral RNA levels by qRTPCR and RTPCR indicated that the loss of either protein could not be attributed to changes in abundance of the mRNAs encoding these factors. However, addition of the proteasome inhibitor MG132 did result in significant restoration of Tat expression, indicating that the compounds are affecting Tat synthesis and/or degradation. Tests in the context of replicating HIV-1 in PBMCs confirmed that 791 significantly reduced virus replication. Parallel analyses of the effect of the compounds on host gene expression revealed only minor changes in either mRNA abundance or alternative splicing. Subsequent tests suggest that 791 may function by reducing levels of the Tat/Rev chaperone Nap1.ConclusionsThe three compounds examined (791, 833, 892), despite their lack of structural similarity, all suppressed HIV-1 gene expression by preventing accumulation of two key HIV-1 regulatory factors, Tat and Rev. These findings demonstrate that selective disruption of HIV-1 gene expression can be achieved.
Highlights
HIV-1 replication is critically dependent upon controlled processing of its RNA and the activities provided by its encoded regulatory factors Tat and Rev
Transcription of the HIV-1 provirus generates a single 9 kb transcript that is subsequently processed through alternative splicing into over 40 mRNAs that fall into three classes; (1) unspliced (US), 9 kb mRNA encoding Gag and Gagpol, (2) singly spliced (SS), 4 kb mRNAs used to synthesize Vif, Vpr, Vpu, and
Over sixty compounds identified as RNA splicing modulators using the SMN2 mini-gene reporter system (Dr Peter Stoilov, University of West Virginia, unpublished) were tested for their ability to inhibit HIV-1 gene expression
Summary
HIV-1 replication is critically dependent upon controlled processing of its RNA and the activities provided by its encoded regulatory factors Tat and Rev. The observation that mutation of a subset of these regulatory elements (ESSV, ESEtat) leads to dramatic perturbation in the viral mRNAs generated and substantially reduces virus replication underlines the significance of these splicing control mechanisms [2,3,4]. More relevant to the goal of the development of therapeutics, several groups have identified small molecules (digoxin, chlorhexidine, IDC16, ABX464, 8-azaguanine, 5310150, 1C8) which appear to function at different stages of HIV-1 RNA processing/expression to block viral structural protein expression [12,13,14,15,16,17]. Both digoxin and chlorhexidine were found to induce significant alterations in HIV-1 RNA abundance, with reductions in accumulation of both viral US and SS RNAs with no change/increased accumulation of MS RNAs [12, 14]
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have