Abstract

Saturn's magnetosphere is currently studied from the microphysical to the global scale by the Cassini‐Huygens mission. During the first half of 2004, in the approach phase, remote sensing observations of Saturn's magnetosphere gave access to its auroral, radio, UV, energetic neutral atom, and dust emissions. Then, on 1 July 2004, Cassini Saturn orbit insertion provided us with the first in situ exploration of Saturn's magnetosphere since Voyager. To date, Saturn orbit insertion is the only Cassini orbit to have been described in common by all field and particle instruments. We use the comprehensive suite of magnetospheric and plasma science instruments to give a unified description of the large‐scale structure of the magnetosphere during this particular orbit, identifying the different regions and their boundaries. These regions consist of the Saturnian ring system (region 1, within 3 Saturn radii (RS)) and the cold plasma torus (region 2, within 5–6 RS) in the inner magnetosphere, a dynamic and extended plasma sheet (region 3), and an outer high‐latitude magnetosphere (region 4, beyond 12–14 RS). We compare these observations to those made at the time of the Voyager encounters. Then, we identify some of the dominant chemical characteristics and dynamical phenomena in each of these regions. The inner magnetosphere is characterized by the presence of the dominant plasma and neutral sources of the Saturnian system, giving birth to a very special magnetosphere dominated by water products. The extended plasma sheet, where the ring current resides, is a variable region with stretched magnetic field lines and contains a mixture of cold and hot plasma populations resulting from plasma transport processes. The outer high‐latitude magnetosphere is characterized by a quiet magnetic field and an absence of plasma. Saturn orbit insertion observations enabled us to capture a snapshot of the large‐scale structure of the Saturnian magnetosphere and of some of the main plasma processes operating in this complex environment. The analysis of the broad diversity of these interaction processes will be one of the main themes of magnetospheric and plasma science during the Cassini mission.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call