Abstract

BackgroundWe recently identified Rbm24 as a novel gene expressed during mouse cardiac development. Due to its tightly restricted and persistent expression from formation of the cardiac crescent onwards and later in forming vasculature we posited it to be a key player in cardiogenesis with additional roles in vasculogenesis and angiogenesis.ResultsTo determine the role of this gene in cardiac development, we have identified its zebrafish orthologs (rbm24a and rbm24b), and functionally evaluated them during zebrafish embryogenesis. Consistent with our underlying hypothesis, reduction in expression of either ortholog through injection of morpholino antisense oligonucleotides results in cardiogenic defects including cardiac looping and reduced circulation, leading to increasing pericardial edema over time. Additionally, morphant embryos for either ortholog display incompletely overlapping defects in the forming vasculature of the dorsal aorta (DA), posterior caudal vein (PCV) and caudal vein (CV) which are the first blood vessels to form in the embryo. Vasculogenesis and early angiogenesis in the trunk were similarly compromised in rbm24 morphant embryos at 48 hours post fertilization (hpf). Subsequent vascular maintenance was impaired in both rbm24 morphants with substantial vessel degradation noted at 72 hpf.ConclusionTaken collectively, our functional data support the hypothesis that rbm24a and rbm24b are key developmental cardiac genes with unequal roles in cardiovascular formation.

Highlights

  • We recently identified Rbm24 as a novel gene expressed during mouse cardiac development

  • The current assembly (Zv9) identifies a protein coding gene as rbm24a residing on chromosome 19 and a novel annotation of a putative rbm24b protein coding gene residing on chromosome 16

  • This protein is termed rbm24b in Zv9. The identification of these genes as rbm24 orthologs is further supported by the identification of a pair of annotated rbm24 paralogs in both the medaka (Oryzias latipes; chr. 11, 16) and pufferfish (Tetraodon nigroviridis; chr. 21 and 8) genomes

Read more

Summary

Introduction

We recently identified Rbm as a novel gene expressed during mouse cardiac development. In a recent transcriptional profiling study, we compared the signatures of mouse embryonic stem cells as they were differentiated towards cardiac cell fates in an effort to uncover novel critical cardiac genes. In this initial study we described the cardiac developmental expression of 31 identified candidate genes with previously unknown roles in cardiogenesis. Nine of these transcripts were expressed in the forming cardiac crescent of the mouse embryo [5], consistent with roles in the earliest stages of heart development. Based on the early cardiac expression of these genes we predicted they likely play significant roles in heart development

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.