Abstract

Viral hemorrhagic septicemia virus (VHSV) infection is associated with fatal outcomes in the aquaculture production of olive flounder (Paralichthys olivaceus). Olive flounders at low and high temperatures are known to be highly susceptible and resistant to VHSV infection, respectively. To study temperature-dependent innate immune activity, 4-aminobenzoic hydrazide (4-AH), a myeloperoxidase (MPO) inhibitor, was used to treat VHSV-infected olive flounders reared at a high temperature of 20 °C (20VI). Mortality, the MPO transcription, and the proteomic expression pattern of the 20VI group were then compared with those of groups of VHSV-infected flounders reared at 15 °C (15V) and 20 °C (20V). The cumulative mortality rate of the 20VI group was increased by 35% compared with that of the untreated 20V group. The MPO transcription was decreased 5.8-fold in 20VI than in 20V group. Its expression decreased further at a lower temperature and after exposure to VHSV. Histopathological analysis revealed necrosis of splenic tissue in 20VI and 15V, but not in 20V group. Based on clustering analysis, proteins with increased expression in 15V and 20VI groups were associated with viral mRNA translation and reproduction compared with those of 20V group. Increased expression of DHX58, MX1, and UBB was detected in 15V and 20VI groups, suggesting a role in triggering innate immune response. Unfortunately, these genes failed to induce the translocation of GLUT4 to the surface membrane from the intracellular location due to decreased expression of 14-3-3 proteins (YWHAB and YWHAZ) and microtubules (TUBA1A and TUBB4B). Suppression of glucose supply led to inactivation of MPO and suppression of MHC-I and MHC–II–linked immune activity, resulting in high viral infection and spread. In conclusion, this study highlights that defective GLUT4 translocation-dependent glucose uptake increases the mortality of VHSV-infected olive flounders by inhibiting MPO activity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.