Abstract
13C- and 15N-NMR studies of the reaction of aromatic amine dehydrogenase (AADH) with methylamine demonstrated that the products of the reductive half-reaction are an equivalent of formaldehyde hydrate and a reduced aminoquinol form of the tryptophan tryptophylquinone (TTQ) cofactor which contains covalently bound substrate-derived N. These data are consistent with the Ping Pong kinetic mechanism and aminotransferase-type chemical reaction mechanism which have been previously proposed for AADH. Comparison of the 15N-NMR spectra of the aminoquinol TTQ intermediates of AADH and methylamine dehydrogenase (MADH) revealed that the substrate-derived aminoquinol N of AADH and MADH exhibited distinct 15N chemical shifts which are separated by approx. 7 p.p.m. In each case, the signal for the substrate-derived aminoquinol N appears optimally with short pulse delay and exhibits a relaxation time and chemical shift which are consistent with 15N covalently bound to an aromatic ring (i.e. aminoquinol) which is attached to a rigid protein matrix. The aminoquinol of AADH is less stable against reoxidation than that of MADH. These data suggest that differences in the active-site mediated electrostatic environments of the aminoquinol N in the respective enzymes may influence both the observed 15N chemical shift and the relative reactivities of the TTQ aminoquinols towards oxygen. These data also demonstrate the utility of 13C- and 15N-NMR spectroscopy as a tool for monitoring the intermediates and products of enzyme-catalysed transformations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.