Abstract
With modern advances in radar technologies and increased complexity in aerial battle, there is need for knowledge acquisition on the abilities and operating characteristics of intercepted hostile systems. The required knowledge obtained through advanced signal processing is necessary for either real time-warning or in order to determine Electronic Order of Battle (EOB) of these systems. An algorithm was therefore developed in this paper based on a joint Time-Frequency Distribution (TFD) in order to identify the time-frequency agility of radar signals based on its changing pulse characteristics. The joint TFD used in this paper was the square magnitude of the Short-Time Fourier Transform (STFT), where power and frequency obtained at instants of time from its Time-Frequency Representation (TFR) was used to estimate the time and frequency parameters of the radar signals respectively. Identification was thereafter done through classification of the signals using a rule-based classifier formed from the estimated time and frequency parameters. The signals considered in this paper were the simple pulsed, pulse repetition interval modulated, frequency hopping and the agile pulsed radar signals, which represent cases of various forms of agility associated with modern radar technologies. Classification accuracy was verified using the Monte Carlo simulation performed at various ranges of Signal-to-Noise Ratios (SNRs) in the presence of noise modelled by the Additive White Gaussian Noise (AWGN). Results obtained showed identification accuracy of 99% irrespective of the signal at a minimum SNR of 0dB where signal and noise power were the same. The obtained minimum SNR at this classification accuracy showed that the developed algorithm can be deployed practically in the electronic warfare field for accurate agility classification of airborne radar signals.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have