Abstract

Zinc (Zn) is an essential micronutrient for human beings. However, Zn malnutrition has become a major problem throughout the world. Wheat is the most important food crop in the world, therefore, developing Zn-enriched wheat varieties provides an effective approach to reduce Zn malnutrition in human beings. The aim of this study was to understand the genetic control of grain Zn density in wheat and hence, to provide genetic basis for breeding wheat with high grain Zn density using molecular approach. A doubled haploid (DH) population developed from a cross between winter wheat varieties Hanxuan10 and Lumai 14 was used to identify quantitative trait loci (QTLs) for Zn concentration and content in wheat grains. In addition, phosphorus (P) concentration and content in wheat grain were also investigated to examine possible interactions between these two nutrients. The wheat grains used in this study were harvested from the plants grown under normal condition in a field trial. We found the grain Zn concentrations of the DH population varied from 25.9 to 50.5 mg/kg and the Zn content varied from 0.90 to 2.21 μg/seed. The grain P concentrations of the DH population varied from 0.258 to 0.429 mg/kg, and the P contents varied from 0.083 to 0.186 mg/seed. A significant positive correlation was observed between Zn and P density in this experiment. The results showed that both grain Zn and P densities were controlled by polygenes. Four and seven QTLs for Zn concentration and Zn content were detected, respectively. All the four QTLs for Zn concentration co-located with the QTLs for Zn content, suggesting a possibility to improve both grain Zn concentration and content simultaneously. Four and six QTLs for P concentration and P content were detected, respectively. The two QTLs for grain Zn concentration on chromosomes 4A and 4D co-located with the QTLs for P concentration. The four QTLs for grain Zn content on chromosome 2D, 3A and 4A co-located with the QTLs for P contents, reflecting the positive correlations between the grain Zn and P density, and providing possibility of improving grain micro- and macronutrient density simultaneously in wheat. In order to improve human health, the effect of P–Zn relation in grain on the Zn bioavailability should also be considered in the future work.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.