Abstract

Starch content and its components are important for determining wheat end-use quality and yield. However, little information is available about their interactions at the QTL/gene level in more than one population using different QTL mapping methods. Therefore, to dissect these interactions, two mapping populations from two locations over 2 years were used. The QTLs for the populations were analyzed by unconditional and conditional QTL mapping by two different analysis methods. In the two populations, there were a total of 24 unconditional additive QTLs detected for flour amylose (FAMS), flour amylopectin (FAMP), flour total starch (FTSC), and the ratio of FAMS to FAMP using ICIMapping4.1 methods, but 26 unconditional QTLs were found using QTLNetwork2.0 methods. Of these QTLs, 10 stable major additive QTLs were identified in more than one environment, mainly distributed on chromosomes 3B, 4A, 5A, and 7D. The maximum percentage of phenotypic variance explained (PVE) reached 54.31%. Two new unconditional major additive QTLs on chromosome 3B (Qftsc3B and Qfamp3B) were found. A total of 23 and 19 conditional additive QTLs were identified in the two populations using two different methods, respectively. Of which, eight and six stable major conditional QTLs were detected on chromosomes 3B, 4A, and 7D, respectively. New repressed QTLs were identified, such as Qftsc/fams5B-1 and Qftsc/fams5B-2. There were 20 epistatic unconditional and 15 conditional QTLs detected. In all, important QTLs on chromosomes 3B, 4A, and 7A were found in both populations. However, the number of important QTLs in the special recombinant inbred line (RIL) population was higher than that in the double haploid (DH) population, especially on chromosomes 7D and 5B. Moreover, the QTLs on chromosomes 4A, 7A, and 7D were close to the Wx-1 loci in the RIL population. These indicated better results can be obtained by a special population to target traits than by a common population. The important QTLs on key chromosomes can always be detected no matter what kinds of populations are used, such as the QTLs on chromosome 4A. In addition, QTL clusters were found on chromosomes 4A, 3B, 7A, 7D, and 5A in the two populations, indicating these chromosome regions were very important for starch biosynthesis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call