Abstract
Soybean isoflavones are valued in certain medicines, cosmetics, foods and feeds. Selection for high-isoflavone content in seeds along with agronomic traits is a goal of many soybean breeders. The aim of the study was to identify the quantitative trait loci (QTL) underlying seed isoflavone content in soybean among seven environments in China. A cross was made between 'Zhongdou 27', a soybean cultivar with higher mean isoflavone content in the seven environments (daidzein, DZ, 1,865 microg g(-1); genistein, GT, 1,614 microg g(-1); glycitein, GC, 311 microg g(-1) and total isoflavone, TI, 3,791 microg g(-1)) and 'Jiunong 20', a soybean cultivar with lower isoflavone content (DZ, 844 microg g(-1); GT, 1,046 microg g(-1); GC, 193 microg g(-1) and TI, 2,061 microg g(-1)). Through single-seed-descent, 130 F(5)-derived F(6) recombinant inbred lines were advanced. A total of 99 simple-sequence repeat markers were used to construct a genetic linkage map. Seed isoflavone contents were analyzed using high-performance liquid chromatography for multiple years and locations (Harbin in 2005, 2006 and 2007, Hulan in 2006 and 2007, and Suihua in 2006 and 2007). Three QTL were associated with DZ content, four with GT content, three with GC content, and five with TI content. For all QTL detected the beneficial allele was from Zhongdou 27. QTL were located on three (DZ), three (GC), four (GT) and five (TI) molecular linkage groups (LG). A novel QTL was detected with marker Satt144 on LG F that was associated with DZ (0.0014 > P > 0.0001, 5% < R (2) < 11%; 254 < DZ < 552 microg g(-1)), GT (0.0027 > P > 0.0001; 4% < R (2) < 9%; 262 < GT < 391 microg g(-1)), and TI (0.0011 > P > 0.0001; 4% < R (2) < 15%; 195 < TI < 871 microg g(-1)) across the various environments. A previously reported QTL on LG M detected by Satt540 was associated with TI across four environments and TI mean (0.0022 > P > 0.0001; 3% < R (2) < 8%; 182 < TI < 334 microg g(-1)) in China. Because both beneficial alleles were from Zhongdou 27, it was concluded that these two QTL would have the greatest potential value for marker-assisted selection for high-isoflavone content in soybean seed in China.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.