Abstract

Potyviruses form one of the largest and most economically important groups of plant viruses. Individual potyviruses and their isolates vary in symptom expression, host range, and ability to overcome host resistance genes. Understanding factors influencing these biological characteristics is of agricultural importance for epidemiology and deployment of resistance strategies. Cucurbit crops are subject to severe losses by several potyviruses including the highly aggressive and variable zucchini yellow mosaic virus (ZYMV). In this project we sought to investigate protein domains in ZYMV that influence systemic infection and host range. Particular emphasis was on coat protein (CP), because of known functions in both cell to cell and long distance movement, and helper component-protease (HC-Pro), which has been implicated to play a role in symptom development and long distance movement. These two genes are also essential for aphid mediated transmission, and domains that influence disease development may also influence transmissibility. The objectives of the approved BARD project were to test roles of specific domains in the CP and HC-Pro by making sequence alterations or switches between different isolates and viruses, and testing for infectivity, host range, and aphid transmissibility. These objectives were largely achieved as described below. Finally, we also initiated new research to identify host factors interacting with potyviral proteins and demonstrated interaction between the ZYMV RNA dependent RNA polymerase and host poly-(A)-binding protein (Wang et al., in press). The focus of the CP studies (MSU) was to investigate the role of the highly variable amino terminus (NT) in host range determination and systemic infection. Hybrid ZYMV infectious clones were produced by substituting the CP-NT of ZYMV with either the CP-NT from watermelon mosaic virus (overlapping, but broader host range) or tobacco etch virus (TEV) (non- overlapping host range) (Grumet et al., 2000; Ullah ct al., in prep). Although both hybrid viruses initially established systemic infection, indicating that even the non-cucurbit adapted TEV CP-NT could facilitate long distance transport in cucurbits, after approximately 4-6, the plants inoculated with the TEV-CPNT hybrid exhibited a distinct recovery of reduced symptoms, virus titer, and virus specific protection against secondary infection. These results suggest that the plant recognizes the presence of the TEV CP-NT, which has not been adapted to infection of cucurbits, and initiates defense responses. The CP-NT also appears to play a role in naturally occurring resistance conferred by the zym locus in the cucumber line 'Dina-1'. Patterns of virus accumulation indicated that expression of resistance is developmentally controlled and is due to a block in virus movement. Switches between the core and NT domains of ZYMV-NAA (does not cause veinal chlorosis on 'Dina-1'), and ZYMV-Ct (causes veinal chlorosis), indicated that the resistance response likely involves interaction with the CP-NT (Ullah and Grumet, submitted). At the Volcani Center the main thrust was to identify domains in the HC-Pro that affect symptom expression or aphid transmissibility. From the data reported in the first and second year report and in the attached publications (Peng et al. 1998; Kadouri et al. 1998; Raccah et al. 2000: it was shown that: 1. The mutation from PTK to PAK resulted in milder symptoms of the virus on squash, 2. Two mutations, PAK and ATK, resulted in total loss of helper activity, 3. It was established for the first time that the PTK domain is involved in binding of the HC-Pro to the potyvirus particle, and 4. Some of these experiments required greater amount of HC-Pro, therefore a simpler and more efficient purification method was developed based on Ni2+ resin.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call