Abstract
Monitoring pharmaceuticals throughout the water cycle is becoming increasingly important for the aquatic environment and eventually for human health. Targeted and non-targeted analysis are today's means of choice. Although targeted analysis usually conducted with the help of a triple quadrupole mass spectrometer may be more sensitive, only compounds previously selected can be identified. The most powerful non-targeted analysis is performed through time of flight mass spectrometers (TOF-MS) extended by a quadrupole mass analyzer (Q), as used in this study. Preceded by solid phase extraction and high-performance liquid chromatography (HPLC), the non-targeted approach allows to detect all ionizable substances with high sensitivity and selectivity. Taking full advantage of the Q-TOF-MS instrument, tandem mass spectrometry (MS/MS) experiments accelerate and facilitate the identification while a targeted MS method enhances the sensitivity but relies on reference standards for identification purposes. The identification of four pharmaceuticals from Rhine river water is demonstrated. The Rhine river originates in Tomasee, Graubünden, Switzerland and flows into the North Sea, near Southern Bight, The Netherlands. Its length amounts to 1232.7 km. Since it is of prime interest to effectively eliminate pharmaceuticals from the water cycle, the effect UV-C irradiation is demonstrated on a laboratory scale. This method allows fast degradation of pharmaceuticals, which is exemplarily shown for the macrolide antibiotic erythromycin. Using the above HPLC-Q-TOF-MS method, concentration-time diagrams are obtained for the parent drug and their photodegradation products. After establishing the equations for first-order sequential reactions, computational fitting allows the determination of kinetic parameters, which might help to predict irradiation times and conditions when potentially considered as fourth stage within wastewater treatment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.