Abstract

Additive-free HIPSN and Y2O3 + Al2O3-doped HPSN are oxidized in air in the temperature range from 1300 to 1500 °C. TEM, SEM, EDS, and XRD are used to analyze the composition and microstructure of the oxide scales in order to determine the oxidation mechanisms. HIPSN exhibits excellent resistance to oxidation in air at temperatures up to 1480 °C due to the formation of a protective silica (cristobalite) scale. No formation of Si2N2O and oxygen-enriched β'-Si3N4 under the silica layer is observed for materials densified without additives. Oxidation rates of additive-containing HPSN are more important due to the formation of a viscous aluminosilicate phase, which easily penetrates along the grain boundaries in the material. Silicon nitride grains in contact with the viscous phase first become enriched in aluminum and oxygen and are then dissolved in the glassy phase. No Si2N2O intermediate layer is formed. The finding of the decisive role of the aluminosilicate in the oxidation process allows one to explain inconsistencies observed in the oxidation kinetics of silicon nitride ceramics. Effects of sintering additives, WC contamination and temperature on the oxidation mechanisms, and structure of oxide scales are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.