Abstract

Polyhydroxyalkanoates (PHA) have received attention owing to their biodegradability and biocompatibility, with studies exploring PHA-producing bacterial strains. As vegetable oil provides carbon and monomer precursors for poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (P(3HB-co-3HHx)), oil-utilizing strains may facilitate PHA production. Herein, Cupriavidus necator BM3-1, which produces 11.1 g/L of PHB with 5% vegetable oil, was selected among various novel Cupriavidus necator strains. This strain exhibited higher preference for vegetable oils over sugars, with soybean oil and tryptone determined to be optimal sources for PHA production. BM3-1 produced 33.9 g/L of exopolysaccharides (EPS), which was three-fold higher than the amount produced by H16 (10.1 g/L). EPS exhibited 59.7% of emulsification activity (EI24), higher than that of SDS and of EPS from H16 with soybean oil. To evaluate P(3HB-co-3HHx) production from soybean oil, BM3-1 was engineered with P(3HB-co-3HHx) biosynthetic genes (phaCRa, phaARe, and phaJPa). BM3-1/pPhaCJ produced 3.5 mol% of 3HHx and 37.1 g/L PHA. BM3-1/pCB81 (phaCAJ) produced 32.8 g/L PHA, including 5.9 mol% 3HHx. Physical and thermal analyses revealed that P(3HB-co-5.9 mol% 3HHx) was better than PHB. Collectively, we identified a novel strain with high vegetable oil utilization capacity for the production of EPS, with the option to engineer the strain for P(3HB-co-3HHx).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.