Abstract

Radiotherapy (RT) is one main method for the treatment of esophageal squamous cell carcinoma (ESCC), and the radioresistance is the predominant cause of patients with local recurrence. The previous results of gene microarray and subsequent verification showed that NRAGE might be involved in radiation resistance of ESCC cells. In this study, we reestablished human esophageal carcinoma radioresistant cell lines TE13R120 and ECA109R60 with gradient dose irradiation as previously reported, respectively. NRAGE expression was high in TE13R120 and ECA109R60 cells and was correlative with ionizing radiation (IR) resistance in clinic. However, the radiosensitivity of TE13R120 cells had a remarkable increase detected by colony formation assays after siRNA against NRAGE (siNRG) transfection into TE13R120 cells. Compared with TE13 cells, an increasing number of TE13R120 cells with NRAGE overexpression in S phase and a lower ratio in G2/M were observed by flow cytometry method (FCM). Intriguingly, the above changes were partially reversed in TE13R120 cells treated with siNRG. More importantly, the ectopic subcellular localization of NRAGE mediated nuclear translocation of β-catenin which may be one reason of IR resistance of esophageal carcinoma cell. These data indicate that NRAGE extremely may be a pivotal factor involved in Wnt/β-catenin signal pathway, mediating nuclear translocation of β-catenin and then facilitating the formation of radioresistance of ESCC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.