Abstract

Based on the fact that the traditional probability distribution entropy describing a local feature of the system cannot effectively capture the global topology variations of the network, some indicators constructed by the network adjacency matrix and Laplacian matrix come into being. Specifically, these measures are based on the eigenvalues of the scaled Laplace matrix, the eigenvalues of the network communicability matrix, and the spectral entropy based on information diffusion that has been proposed recently, respectively. In this article, we systematically study the dependence of these measures on the topological structure of the network. We prove from various aspects that spectral entropy has a better ability to identify the global topology than the traditional distribution entropy. Furthermore, the indicator based on the eigenvalues of the network communicability matrix achieves good results in some aspects while, overall, the spectral entropy is able to identify network topology variations from a global perspective.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.