Abstract

Many heart diseases can be identified and cured at an early stage by studying the changes in the features of electrocardiogram (ECG) signal. Myocardial Infarction (MI) is the serious cause of death worldwide. If MI can be detected early, the death rate will reduce. In this paper, an algorithm to detect MI in an ECG signal using Daubechies wavelet transform technique is developed. The ECG signal-denoising is performed by removing the corresponding wavelet coefficients at higher scale. After denoising, an important step towards identifying an arrhythmia is the feature extraction from the ECG. Feature extraction is carried out to detect the R peaks of the ECG signal. Since as R peak is having the highest amplitude, and therefore it is detected in the first round, subsequently location of other peaks are determined. Having completed the preprocessing and the feature extraction the MI is detected from the ECG based on inverted T wave logic and ST segment elevation. The algorithm was evaluated using MIT-BIH database and European database satisfactorily.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.