Abstract

Electrocardiogram (ECG) signal denoising is an important preprocessing for ECG signal analysis. The contaminated ECG signal can be considered as the combination of the desired clean signal and the noise. Thus, ECG signal denoising can be considered as a problem of obtaining an optimal solution to the desired clean signal. In this paper, an effective optimization scheme for ECG signal denoising is presented based on low-rank matrix decomposition. First, the ECG denoising problem is formulated as low-rank matrix decomposition. So, an ECG beats matrix is assumed to be the combination of a sparse noise matrix and a low-rank matrix. Considering the repeatability of ECG signal, the rank of the ECG beats matrix is assumed to be one. Then, to fully exploit the low-rank property of the ECG signal, the matrix decomposition is modified by means of adding different weights to different singular values. Finally, the desired clean ECG signal is reconstructed by the low-rank component. The experimental results show that the proposed denoising method achieves the best performance of suppressing the electromyographic noise in the ECG signals compared with other optimization models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.