Abstract

Effect-directed analysis (EDA) has shown its added value for the detection and identification of compounds with varying toxicological properties in water quality research. However, for routine toxicity assessment of multiple toxicological endpoints, current EDA is considered labor intensive and time consuming. To achieve faster EDA and identification, a high-throughput (HT) EDA platform, coupling a downscaled luminescent Ames and cell-based reporter gene assays with a high-resolution fraction collector and UPLC-QTOF MS, was developed. The applicability of the HT-EDA platform in the analysis of aquatic samples was demonstrated by analysis of extracts from WWTP influent, effluent and surface water. Downscaled assays allowed detection of mutagenicity and androgen, estrogen and glucocorticoid agonism following high-resolution fractionation in 228 fractions. From 8 masses tentatively identified through non-target analysis, 2 masses were further investigated and chemically and biologically confirmed as the mutagen 1,2,3-benzotriazole and the androgen androstenedione. The compatibility of the high-throughput EDA platform with analysis of water samples and the incorporation of mutagenic and endocrine disruption endpoints allow for future application in routine monitoring in drinking water quality control and improved identification of (emerging) mutagens and endocrine disruptors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.