Abstract
This paper proposed a muscle-activation-dependent human-exoskeleton model for predicting human-exoskeleton coupling parameters to improve the studies of coupling dynamics. With a newly designed platform and the help of 20 volunteers (10 males and 10 females, age: 24.45 ± 2.31 years old, height: 167.70 ± 8.35 cm, weight: 66.50 ± 18.74 kg), coupling parameters were identified with surface electromyographic (EMG) signals monitored to represent muscle activation. Then convolutional neural network (CNN) was used to predict coupling parameters with six EMG features as inputs:mean absolute value (MAV), mean absolute value slope (MAVSLP), waveform length (WL), Willison Amplitude (WAMP), variance (VAR), and auto regressive (AR) coefficients. Finally, sensitivity analysis of the CNN’s performance identified AR, MAV, and VAR as the key determinants of the coupling parameters. Further analysis unveiled strong correlation between coupling stiffness and both MAV and VAR. The novelty and contribution are the design of coupling experimental platform and the establishment of muscle-activation-dependent human-exoskeleton coupling model which provides a possibility to obtain coupling parameter identification form complex human-exoskeleton interaction scenarios.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.