Abstract

Accurate identification of moving vehicle loads on bridges is one of the challenging tasks in bridge structural health monitoring, but lacks of intensive investigations to merge the heterogeneous data of vision-based vehicle spatiotemporal information (VVSI) and vehicle-induced bridge responses for moving force identification (MFI) in the existing time domain methods (TDM). In this study, a novel MFI method is proposed by integrating instantaneous VVSI and an improved TDM (iTDM). At first, a novel VVSI method combining background subtraction with template matching is presented to accurately track moving vehicles on bridges. With the calibration technique and camera perspective transformation model, the distribution of vehicles (DOV) on bridges is obtained and used as a priori information in the subsequent MFI. Then, the iTDM is developed based on the MFI equation re-formed in the form of instantaneous VVSI instead of the constant speed vehicle crossing bridges assumed in the traditional TDM. Finally, based on the redundant dictionary matrix composed of Haar functions for a moving load, the MFI problem is converted to explore a solution to the atom vectors and then solved by the Tikhonov regularization method. Experimental verifications in laboratory and a comparative study with the existing three methods are conducted to assess the feasibility of the proposed method. The results show that the proposed MFI method outperforms the existing methods and can effectively identify the moving vehicle loads with a higher and acceptable accuracy. It is successful for the proposed method to replace the assumption of constant speed vehicle crossing bridge in the traditional TDM with the instantaneous VVSI in the MFI problem.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call