Abstract

Squash silverleaf (SSL), caused by the silverleaf whitefly [Bemisia argentifolii (formerly known as Bemisia tabaci Gennadius, B strain)], is an important physiological disorder that affects squash (Cucurbita spp.) by reducing yield potential. Breeding squash with resistance to SSL disorder can be facilitated by using marker-assisted selection (MAS). Resistance to SSL disorder, in Cucurbita pepo, is conferred by a single recessive gene (sl). The objective of this study was to identify molecular markers associated with resistance. A zucchini squash, SSL disorder resistant breeding line, ‘Zuc76’ (sl/sl) and a SSL disorder susceptible zucchini cultivar ‘Black Beauty’ (Sl/Sl) were screened with 1,152 randomly amplified polymorphic DNA (RAPD) primers and 432 simple sequence repeat (SSR) markers to identify polymorphisms. Using F2 and BC1 progeny segregating for SSL disorder resistance, three RAPD (OPC07, OPL07 and OPBC16) primers and one SSR (M121) marker were found associated with sl. Fragments amplified by RAPD primer OPC07 was linked in coupling phase to sl, whereas RAPD primer OPL07 was linked in repulsion phase. RAPD primer OPBC16 and SSR marker M121 were co-dominant. The allelic order of these loci was found to be M121–sl–OPC07–OPL07–OPBC16. The closest marker to sl is M121 with an estimated genetic distance of 3.3 cM. The markers identified in this study will be useful for breeding summer squash (C. pepo) for SSL disorder resistance derived from zucchini squash breeding line ‘Zuc76’.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.