Abstract

The low-spin structure of 93Nb has been studied using the (n,n'gamma) reaction at neutron energies ranging from 1.5 to 3 MeV and the 94Zr(p,2ngamma)93Nb reaction at bombarding energies from 11.5 to 19 MeV. States at 1779.7 and 1840.6 keV, respectively, are proposed as mixed-symmetry states associated with the pi2p(1/2)-1x(2(1),MS+,94Mo) coupling. These assignments are derived from the observed M1 and E2 transition strengths to the 2p(1/2)-1x(2(1)+,94Mo) symmetric one-phonon states, energy systematics, spins and parities, and comparison with shell model calculations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.