Abstract

The maize weevil (MW) (Sitophilus zeamais), and the larger grain borer (LGB) (Prostephanus truncatus) are major storage pests causing serious losses in maize (Zea mays L.) in developing countries of Latin America (LA). This study identified maize landraces with high levels of resistance to MW and LGB by screening 1171 genotypes collected from 24 LA countries in 38 sampling areas. Maize grain weight losses (GWL), total dust production (TDP) and number of adult progeny (NAP) were measured for LGB and MW attack in each genotype. Susceptibility traits to MW and LGB were related to specific geographical location. Range of resistance for MW was from 0.6 to 51 %, while for LGB from 0.1 to 66 %. Approximately 28 % of the analyzed genotypes showed high level of resistance to MW, with Antilles region offering the most resistant accessions with races of EarCar, Chande, Haitye, Nal-Tel, Tuson, and Canill. Resistance to LGB was observed in 22 % of genotypes analyzed with accessions from Southern México with races of Cónico, Nal-Tel, Vandeño, Elotes Occidentales, Cubano, Tuxpeño, and Tepecintle. Low correlation (r = 0.28; P < 0.01) between maize resistance to MW and LGB indicated a divergent adaptive response of maize grain to these two pest. Geographic data showed a negative correlation between latitude and longitude with MW resistance traits being significant only for longitude (r = -0.253; P < 0.05). Opposite trend of correlations, positive but not significant, was observed for LGB resistance traits. These results indicate an influence of geographic location in local varieties being selected for storage pest resistance over time. Genotypes with excellent postharvest insect resistance have now been identified for maize breeders to use in developing improved cultivars for use in LA.The maize weevil (MW) (Sitophilus zeamais), and the larger grain borer (LGB) (Prostephanus truncatus) are major storage pests causing serious losses in maize (Zea mays L.) in developing countries of Latin America (LA). This study identified maize landraces with high levels of resistance to MW and LGB by screening 1171 genotypes collected from 24 LA countries in 38 sampling areas. Maize grain weight losses (GWL), total dust production (TDP) and number of adult progeny (NAP) were measured for LGB and MW attack in each genotype. Susceptibility traits to MW and LGB were related to specific geographical location. Range of resistance for MW was from 0.6 to 51 %, while for LGB from 0.1 to 66 %. Approximately 28 % of the analyzed genotypes showed high level of resistance to MW, with Antilles region offering the most resistant accessions with races of EarCar, Chande, Haitye, Nal-Tel, Tuson, and Canill. Resistance to LGB was observed in 22 % of genotypes analyzed with accessions from Southern México with races of Cónico, Nal-Tel, Vandeño, Elotes Occidentales, Cubano, Tuxpeño, and Tepecintle. Low correlation (r = 0.28; P < 0.01) between maize resistance to MW and LGB indicated a divergent adaptive response of maize grain to these two pest. Geographic data showed a negative correlation between latitude and longitude with MW resistance traits being significant only for longitude (r = -0.253; P < 0.05). Opposite trend of correlations, positive but not significant, was observed for LGB resistance traits. These results indicate an influence of geographic location in local varieties being selected for storage pest resistance over time. Genotypes with excellent postharvest insect resistance have now been identified for maize breeders to use in developing improved cultivars for use in LA.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call