Abstract

Low molecular weight glutenin subunits (LMW-GS) play an important role in determining dough properties and breadmaking quality. However, resolution of the currently used methodologies for analyzing LMW-GS is rather low which prevents an efficient use of genetic variations associated with these alleles in wheat breeding. The aim of the current study is to evaluate and develop a rapid, simple, and accurate method to differentiate LMW-GS alleles using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. A set of standard single LMW-GS allele lines as well as a suite of well documented wheat cultivars were collected from France, CIMMYT, and Canada. Method development and optimization were focused on protein extraction procedures and MALDI-TOF instrument settings to generate reproducible diagnostic spectrum peak profiles for each of the known wheat LMW-GS allele. Results revealed a total of 48 unique allele combinations among the studied genotypes. Characteristic MALDI-TOF peak patterns were obtained for 17 common LMW-GS alleles, including 5 (b, a or c, d, e, f), 7 (a, b, c, d or i, f, g, h) and 5 (a, b, c, d, f) patterns or alleles for the Glu-A3, Glu-B3, and Glu-D3 loci, respectively. In addition, some reproducible MALDI-TOF peak patterns were also obtained that did not match with any known alleles. The results demonstrated a high resolution and throughput nature of MALDI-TOF technology in analyzing LMW-GS alleles, which is suitable for application in wheat breeding programs in processing a large number of wheat lines with high accuracy in limited time. It also suggested that the variation of LMW-GS alleles is more abundant than what has been defined by the current nomenclature system that is mainly based on SDS-PAGE system. The MALDI-TOF technology is useful to differentiate these variations. An international joint effort may be needed to assign allele symbols to these newly identified alleles and determine their effects on end-product quality attributes.

Highlights

  • Wheat seed storage proteins are composed of two major fractions, gliadins and glutenins

  • This indicates that the non-glutenin proteins were eliminated completely from the pellet based on the optimized protein extraction method which is suitable for MALDI-TOF-MS analysis

  • Based on MALDI-TOF settings and models, over 100 wheat samples can be readily analyzed for Low molecular weight glutenin subunits (LMW-GS) alleles, indicating a high throughput nature

Read more

Summary

Introduction

Wheat seed storage proteins are composed of two major fractions, gliadins and glutenins Based on their electrophoretic mobility, glutenin proteins are divided into high molecular weight glutenin subunits (HMW-GS) and low molecular weight glutenin subunits (LMW-GS.) [1]. LMW-GS is highly polymorphic and mainly encoded by genes on complex loci Glu-A3, Glu-B3, and Glu-D3 on the short arms of group 1 chromosomes 1A, 1B, and 1D, respectively [3,4]. It possesses highly significant effects on dough physical properties especially dough extensibility, which is highly important for breadmaking [5,6,7,8,9]. Utilization of genetic variations associated with LMW-GS is currently an important task in modern wheat breeding

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call