Abstract

The evaluation and enhancement of Li‐ion battery chemistries relies on detailed knowledge of the chemical processes occurring. Undesired side reactions have to be identified and correlated with used materials and operation/storage conditions, which requires suitable analytical tools, especially for minor and reactive species. Herein, a complementing experimental and theoretical method based on pulse electron paramagnetic resonance and density functional theory is presented using vanadyl ions as sensors for the chemical battery environment. The sensor is endogenously formed via cathode dissolution during battery operation. Probing the ligand sphere of the sensor, decomposition products of the electrolyte salt LiPF6are identified, which are proposed to comprise P(+V) and P(+III) constituents. Extensive conformational flexibility of the ligands is observed, which is investigated in terms of structural parameters and holistically with molecular dynamics simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.